Základní složky nukleových kyselin
Mononukleotid obsahuje tři složky, a sice pentózu, fosfát a dusíkatou bázi. Centrální postavení mezi nimi má pentóza, buď β-D-ribofuranóza (ribóza) nebo 2’-deoxy-β-D-ribofuranóza (deoxyribóza). V nukleotidech se uhlíky pentózy číslují s apostrofem (C2’..cé dvě s čarou), aby se odlišily od uhlíků báze. Podle typu pentózy se rozlišují ribonukleové kyseliny (ribonucleic acid, RNA) a deoxyribonukleové kyseliny (DNA). Pentóza se vyskytuje v různých konformacích. Jestliže C2’ vystupuje nad rovinu furanózového kruhu shodně s C5’, jde o konformaci 2’-endo, jestliže takto vystupuje C3’, konformace se nazývá 3’-endo. Konformace pentóz se mění při funkčně významných proměnách ve vyšší struktuře nukleových kyselin.
Na C1 pentózy je N-β-glykosidovou vazbou navázána báze. Báze jsou odvozeny buď od pyrimidinu (cytosin, uracil, thymin) nebo od purinu (adenin, guanin). V RNA se thymin vyskytuje jen výjimečně, DNA neobsahuje uracil. Nositelem bazického charakteru těchto sloučenin jsou heterocyklické dusíky, které však v buňce při pH kolem 7 nejsou protonovány.
Sloučenina dusíkaté báze se sacharidem se nazývá nukleosid, podle pentózy ribonukleosid (konkrétně cytidin, uridin, thymidin) nebo deoxyribonukleosid (adenosin, guanosin). Heterocykly bazí jsou ploché, jejich rovina je přibližně kolmá k rovině furanózového kruhu pentózy. Na první pohled se zdá, že báze může vzhledem k pentóze rotovat kolem glykosidové vazby. Sterické zábrany však umožňují zaujmout pouze syn- nebo anti- konformaci, podle toho, zda-li báze je kolem glykosidové vazby otočena nad plochu pentózy (syn-) nebo na stranu opačnou (anti-). V přirozené dsDNA převládá anti- konformace purinů i pyrimidinů.
Esterifikací sacharidu kyselinou trihydrogenfosforečnou z nukleosidu vzniká nukleotid. V ribonukleotidech může být fosfát navázán v poloze 2’, 3’ nebo 5’, v deoxyribonukleotidech v poloze 3’ nebo 5’.
Vzhledem ke složitosti vzorců a délce názvů složek nukleových kyselin nomenklaturní komise Mezinárodní unie pro čistou a použitou chemii (IUPAC) stanovila pravidla pro užívání názvů, zkratek jedno- nebo třípísmenových symbolů. Nejužívanější z nich uvádí tabulka:
Baze | Ribonukleosid | Deoxyribonukleosid | |||||
---|---|---|---|---|---|---|---|
N | dN | ||||||
Pyrimidinové | Pyr | -idin | Y | Pyd | Deoxy- -idin | dY | dPyd |
Cytosin | Cyt | Cytidin | C | Cyd | Deoxycytidin | dC | dCyd |
Uracil | Ura | Uridin | U | Urd | Deoxyuridin | dU | dUrd |
Thymin | Thy | Ribosylthymin | T | Thd | (Deoxy)thymidin | dT | dThd |
Purinové | Pur | -osin | R | Puo | Deoxy- -osin | dR | dPud |
Adenin | Ade | Adenosin | A | Ado | Deoxyadenosin | dA | dAdo |
Guanin | Gua | Guanosin | G | Guo | Deoxyguanosin | dG | dGuo |
Hypoxantin | Hyp | Inosin | I | Ino | |||
Xantin | Xan | Xantosin | X | Xao | |||
Orotát | Oro | Orotodin | O | Ord |
Příklady[upravit | editovat zdroj]
Uridin-5’-fosfát | Urd-5’-P | UMP |
Uridin-3’-fosfát | Urd-3’-P | |
Adenosin-5’-difosfát | Ado-5’-PP | ADP |
Adenosin-5’-trifosfát | Ado-5’-PPP | ATP |
Cyklický adenosin-3’,5’-fosfát | Ado-3’,5’-P | cAMP |
Deoxycytidin-5’-fosfát | dCyd-5’-P | dCMP |
Izoakceptorové RNA | tRNA1AA, tRNA2AA, tRNA5AA | |
Aminoacyl-tRNA | AA-tRNA | |
Heterogenní jaderná RNA | hnRNA | |
Malá jaderná RNA | snRNA (small nuclear RNA) | |
Malá jadérková RNA | snoRNA (small nucleolar RNA) | |
DNA komplementární k mRNA | cDNA |
Poznámky k tabulce:
- Komise IUPAC rezervovala jednopísmenové symboly C, T, A, G apod. pro nukleosidy zařazené v oligo- nebo polynukleotidu. Píše se CpUpGpAp nebo C–U–G–Ap v případě RNA a d(pApGpT) nebo d(pA–G–T) v případě DNA. Fosfáty (a koncové fosfáty) se značí malým písmenem p. Pokud není polarita řetězce udána čísly nebo šipkami mezi písmeny, pak 5’-konec řetězce se v zápisu nalézá vlevo a 3’-konec vpravo. Je-li na některém konci symbol p, znamená to, že koncová 5’- nebo 3’-OH skupina je esterifikována fosfátem. Jednopísmenové symboly se nepoužívají pro mononukleotidy; ty se mohou popisovat pouze třípísmenovými symboly a fosfát je zapisován jako velké písmeno P.
- Předpona deoxy- se zpravidla u thymidinu vynechává, takže dT je thymidin. T je ribosylthymin, vyskytuje se např. v transferových RNA.
- Zkratky ATP, CDP, dGMP jsou rezervovány pouze pro nukleosid-5’-fosfáty, nikoli 3’- nebo 2’-fosfáty. První fosfát, označovaný jako α, je na pentózu napojen esterovou vazbou, druhý (β) a třetí (γ) fosfát tvoří s předchozím fosfátem anhydrid.
- Fosfát se může fosfodiesterovou vazbou vázat na dva uhlíky téže pentózy, čímž vzniká ve sloučenině další heterocyklus, proto se sloučenina nazývá cyklický nukleotid. Zkratkami cAMP a cGMP se označují příslušné 3’,5’-fosfáty; mají významnou signální funkci v buňce.
Vedle uvedených základních složek se v nukleových kyselinách vyskytují další, tzv.minoritní báze a nukleosidy. Většinou vznikají dodatečnou metylací báze nebo pentózy po jejich vestavění do polynukleotidu, existuje např. N-6-metyladenosin (m6A), 5-metylcytosin (m5C), 2’-O-metylguanosin (Gm). V transferových RNA se nachází dihydrouracil a thyminribosid. Minoritní báze a nukleosidy se asi účastní tvorby signálních míst nebo jejich substituenty chrání nukleovou kyselinu před štěpením nukleázami. Další báze jsou metabolity základních bází, např. hypoxantin (6-oxopurin), xantin (2,6-dioxopurin) a kyselina močová (2,6,8-trioxopurin). Metylxantiny kofein (1,3,7-trimetylxantin), theofyllin (1,3-dimetylxantin) a theobromin (3,7-dimetylxantin) jsou farmakologicky účinné látky rostlinného původu.
Z vlastností bazí je významná jejich tautomerie, kdy se izomery liší rozložením elektronů a protonů v molekule.
V buňce při pH kolem 7 převažuje laktamová forma u uracilu, guaninu a thyminu a laktimová forma u cytosinu a adeninu. Tautomerie je důležitá pro správné párování bazí ve dvouřetězcových nukleových kyselinách. Další vlastností bazí je jejich charakteristické spektrum s maximem λ=260 nm. Je využíváno v řadě metodických přístupů ke studiu nukleových kyselin (čistota preparátu nukleových kyselin, jejich koncentrace, denaturace apod.)
Odkazy[upravit | editovat zdroj]
Související články[upravit | editovat zdroj]
- Struktura nukleových kyselin
- Primární struktura nukleových kyselin
- Štěpení nukleové kyseliny hydrolýzou
- Metody sekvencování
- Sekundární struktura DNA
- Denaturace nukleových kyselin, molekulární hybridizace
- Sekundární struktura RNA
- Topologie DNA
- Interakce DNA s proteiny
- Bakteriální chromozom
- Eukaryotické chromosomy
- DNA mitochondrií
Zdroje[upravit | editovat zdroj]
- ŠTÍPEK, Stanislav. Stručná biochemie : Uchování a exprese genetické informace. 1. vydání. Medprint, 1998. 92 s. s. 8–11. ISBN 80-902036-2-0.