Inzulin
(přesměrováno z Insulin)
Inzulín | |
![]() | |
Prekurzor | preproinzulín, proinzulín |
---|---|
Žláza | endokrinný pankreas |
Struktura | heterodimer zložený z dvoch reťazcov (α a β, spojené disulfidovými mostíkmi) |
Cílový orgán/tkáň | kostrová svalovina, myokard, tukové tkanivo, pečeň |
Receptor | inzulínový receptor |
Účinky | zvyšuje vstup glukózy do buniek a proteosyntézu, inhibuje uvoľňovanie glukagónu a tvorbu MK; v pečeni: glykogenéza, tvorba TAG, glykolýza, znížená tvorba glukózy a ketolátok; vo svaloch: glykogenéza, glykolýza |
OMIM | 176730 |
Inzulín patrí medzi pankreatické hormóny. Je produkovaný v špecializovaných bunkách pankreatických ostrovčekov – tzv. B-bunky. Je to peptidový hormón, reguluje energetický metabolizmus. Inzulín je nazývaný aj hormónom sýtosti, nadbytku. Choroby nejako spojené s inzulínom (problém v syntéze, problém s bunkami ostrovčekov, poruchy receptorov a ich signalizácie) sú v našej populácii pomerne rozšírené – aj laik pozná „cukrovku“, teda diabetes mellitus (DM).
Stavba pankreatického ostrovčeka[upravit | editovat zdroj]
B-bunky (60 % z buniek ostrovčeku) sa nachádzajú prevažne v centre, A-bunky (25 %, produkujú glukagón), naopak, skôr na periférii. Arteriola prichádza do centra, tam sa vetví a kapiláry smerujú k okrajom myslenej deformovanej gule. Takto je možné, aby uvoľnený inzulín pôsobil na A-bunky, zatiaľ čo glukagón sa väčšinou nestihne dostať k B-bunkám (polčas rozpadu 1–3 min, okrem toho je zvyčajne väčšina glukagónu vychytaná pečeňou). Toto je dobré si uvedomiť, keď budeme hovoriť o regulácii sekrécie hormónov.
História[upravit | editovat zdroj]
Inzulín izolovali už v roku 1921 páni Banting a Best (ako tzv. „ostrovčekový faktor“) z pankreatického tkaniva. Patria mu (medzi proteínmi) mnohé prvenstvá – bol to prvý proteín, kde bol podaný dôkaz hormonálnej účinnosti, prvý proteín, ktorý bol kryštalizovaný a sekvenovaný, prvý umelo syntetizovaný v laboratóriu. Na druhej strane – o jeho intracelulárnom pôsobení a rôznych molekulárnych mechanizmoch vieme vcelku málo.
Štruktúra[upravit | editovat zdroj]
Molekula inzulínu je heterodimér zložený z dvoch reťazcov (α a β, spojené disulfidovými mostíkmi). V celej molekule sú tri miesta, v ktorých zámena aminokyseliny vyvolá neúčinnosť – umiestnenie disulfidových väzieb, hydrofóbne zbytky C-konca β-reťazca a hydrofóbne zbytky oboch koncov α-reťazca. (Substitúcie aminokyselín sú ináč dosť časté, ale ak nastávajú mimo spomínaných troch miest, prakticky nemenia biologickú účinnosť.)
Syntéza[upravit | editovat zdroj]
Syntéza inzulínu – tak ako každého proteínu – začína v jadre transkripciou a pokračuje na ribozómoch RER transláciou – vzniká preproinzulín. Od inzulínu sa líši pre- sekvenciou (hydrofóbne AMK, slúži ako usmerňovač, t.j. aby molekula cestovala do cisterien RER) a spájajúcim C-peptidom (sekvencia AMK, ktorá spája N-koniec α-reťazca a C-koniec β-reťazca). Pre- sekvencia je odstránená v RER, vzniká proinzulín. Ten má vhodnú konformáciu na to, aby sa zoxidovali -SH skupiny cysteínov a vznikli tak disulfidové mostíky medzi α- a β-reťazcom. Následne je proinzulín transportovaný do GA, kde začína proteolýza (odstránenie C-peptidu). Inzulín, malé množstvo proinzulínu (pomer inzulín/proinzulín je 5:1), C-peptid a minoritné množstvá ďalších látok sú potom balené do sekrečných granúl a po príslušnom signále fúzujú s cytoplazmatickou membránou a uvoľňujú svoj obsah do ECT.
Sekrécia inzulínu[upravit | editovat zdroj]
Sekrécia prebieha nasledovným mechanizmom:
- v prípade nárastu hladiny glukózy v plazme (stav po jedle) – a teda úmerne aj v B-bunkách pankreasu – dôjde k zmene membránového potenciálu (depolarizácii).
- Depolarizácia je spôsobená nahromadením ATP v B-bunkách, ktoré vedie k uzatvoreniu ATP-dependentných-K+ kanálov, takže draslík sa v bunke hromadí. ATP vzniká v dýchacom reťazci, Acetyl-CoA pre citrátový cyklus pochádza z pyruvátdehydrogenázovej reakcie. Pyruvát vzniká aeróbnou glykolýzou.
- Keďže metabolizmus glukózy začína v B-bunkách glukokinázou (Km = 10 mmol/l, ten istý enzým sa nachádza ešte v hepatocytoch), je potrebné, aby hladina glukózy stúpla v plazme na hodnotu cca 8–10 mmol/l. Týmto mechanizmom je zabezpečené, aby veľké množstvá ATP vznikali len pri vysokých hladinách glukózy (transportér pre Glc SLC2A2 je aktívny pri vyšších hladinách, normálna hladina Glc je 3,6–5,5 mmol/l).
- V dôsledku depolarizácie sa otvárajú Ca2+ kanály, stúpne hladina vápnika v cytoplazme B-buniek a dôjde k fosforylácii cytoskeletu – sekrečné granule splývajú s membránou (Ca2+ je potrebný ako kofaktor pre kinázy).
- Postprandiálna sekrécia prebieha v dvoch „fázach“ (resp. dva píky na krivke hladiny inzulínu v plazme v závislosti od času) – ranná a neskorá fáza.
- Na myšiach bolo pozorované, že sekréciu inzulínu zvyšuje aj osteokalcín (glykoproteín produkovaný osteoblastmi v kosti), rovnako ako proliferáciu B-buniek. V ľudskom tele zatiaľ nie je jasné, čo spôsobuje komunikáciu medzi kosťami a reguláciou energetického metabolizmu. V súčasnosti je zrejmé, že inaktivácia tzv. PTPRV génu (kóduje tyrozínfosfatázu prítomnú v kmeňových bunkách, Sertoliho bunkách a osteoblastoch) pozitívne vplýva na proliferáciu B-buniek a sekréciu inzulínu.
- Na druhej strane je sekrécia inzulínu inhibovaná somatostatinom.
- V klinike je dôležité stanovenie množstva C-peptidu ako márkera endogénnej produkcie inzulínu. Využíva sa na rozlíšenie cukrovky prvého a druhého typu, najmä u pacientov liečených exogénne podávaným inzulínom.
Mechanizmus účinku[upravit | editovat zdroj]
Inzulínový receptor[upravit | editovat zdroj]
Na membráne cieľových buniek je receptor – heterotetramér. Podjednotka α je uložená extracelulárne, viaže hormón. Podjednotku β tvorí transmembránový proteín a jeho intracelulárna časť vykazuje tyrozínkinázovú aktivitu. Podjednotky sú kovalentne spojené disulfidovými väzbami v pomere α2-β2.
Prevod signálu[upravit | editovat zdroj]
V prípade naviazania inzulínu dôjde k oligomerizácii, zhluknú sa dva (alebo viaceré) receptory k sebe, následne sa zmení konformácia molekúl – dôsledkom je autofosforylácia intracelulárnych častí susedných polovíc receptorov. Syntéza receptoru a následná degradácia prebieha s polčasom rozpadu do 12 hodín. K prevodu signálu slúžia adaptorové proteíny – v prípade inzulínu IRS-1 (inzulin receptor substrate). O druhom poslovi inzulínu sa vedú spory. Celá kaskáda končí fosforyláciou/defosforyláciou cieľových proteínov, popr. spôsobuje vystavenie transportných proteínov alebo pôsobí na DNA (viď ďalší odstavec). Dochádza taktiež k internalizácii („pohlteniu“) komplexu hormón-receptor.
Degradácia[upravit | editovat zdroj]
Inzulín je degradovaný (najmä v pečeni, sčasti v obličkách a placente) enzýmom inzulinázou, popr. glutathion-inzulín-transhydrogenázou (pečeň), receptor je znovu vystavený na membráne.
Down-regulation[upravit | editovat zdroj]
V prípade, že je koncentrácia inzulínu vysoká, klesá citlivosť tkanív na inzulín (tzv. „down-regulation“ – zníženie počtu receptorov na membránach). To sa podieľa na vzniku inzulínovej rezistencie pri DM II.
Pôsobenie inzulínu[upravit | editovat zdroj]
Inzulín zvyšuje transport glukózy z krvi do buniek kostrového svalstva, myokardu a tukového tkaniva. Deje sa tak vďaka tomu, že hormón spôsobí vystavenie glukózových transportérov GLUT4 (tie boli zatiaľ v hotovosti pripravené v ICT) na membráne. Deje sa tak najmä v bunkách kostrového svalu, kardiomyocytoch a adipocytoch. Rôznymi metódami (subcelulárna frakcionácia, elektrónová a fluorescenčná mikroskopia) bolo dokázané, že v neprítomnosti inzulínu v týchto tkanivách je väčšina (cca 95 %) množstva GLUT4 umiestnená intracelulárne.
Keďže sa inzulín vyplavuje po jedle – za hladovania (alebo niekoľko hodín po jedle) klesá jeho hladina – je glukóza počas väčšiny dňa (človek je všeobecne pripravený skôr na prežívanie nedostatku ako nadbytku…) šetrená pre mozog práve vďaka tomu, že do svalov a do tuku sa nedostane, resp. dostane v malom množstve (chýba GLUT4 na membráne, pretože chýba inzulín).
Účinky na energetický metabolizmus[upravit | editovat zdroj]
Sú odvodené od stavu, v ktorom sa človek nachádza po jedle. Telo dostalo dávku glukózy, ktorú treba spracovať. Preto bude aktívna glykolýza, glykogenéza, lipogenéza a ukladanie lipidov v adipocytoch. Samozrejme, ak treba, glukóza sa ihneď spotrebuje (napr. pracujúcim svalom, mozog žije takmer iba z glukózy…). Inzulín znižuje množstvo cAMP, resp. inhibuje premenu neaktívnej adenylátcyklázy na aktívnu. Vďaka tomu:
- nevznikne proteínkináza A (zostane v inaktívnom stave ako PKB), ktorá by premieňala aktívnu glykogénsyntázu na inaktívnu glykogénsyntázu.
- zostane inaktívna fosforyláza, ktorá je riadiacim enzýmom glykogenolýzy.
- na lipogenézu pôsobí aktiváciou acetyl-CoA-karboxylázy a zároveň nízkou hladinou cAMP inhibuje lipolýzu.
Pôsobením na DNA indukuje inzulín biosyntézu enzýmového komplexu syntázy mastných kyselín a znižuje syntézu fosfoenolpyruvátkarboxykinázy (regulačný enzým glukoneogenézy). V pečeni inhibuje ketogenézu, spôsobuje rast buniek.
Je dobré uvedomiť si, že na metabolizmus ako taký musíme pozerať ako na veľký celok. Ak ovplyvníme metabolickú dráhu v nejakej bunke, v iných bunkách to neostane bez odozvy. Preto na jednej strane vidíme priame pôsobenie inzulínu (jednoducho naviazaním sa na receptor v membráne), na druhej strane nenápadné nepriame zásahy do deja (napr. blok lipolýzy v adipocytoch spôsobí v pečeni nedostatok FFA, preto bude pečeň spracovávať najmä glukózu).
Okrem toho vplýva inzulín pozitívne na rast a replikáciu buniek, na hojenie rán (poznámka: v kultúrach fibroblastov spôsobuje inzulín schopnosť rastových faktorov (FGF, PDGF, EGF…) stimulovať bunkový cyklus).
Fetálne obdobie[upravit | editovat zdroj]
Inzulín sa začína tvoriť v 10 týždni a pôsobí tiež na fetálnu organogenézu. (placenta je pre inzulín nepriepustná, preto sa tam materský inzulín nedostane).
Inzulín v terapii[upravit | editovat zdroj]
Odkazy[upravit | editovat zdroj]
Související články[upravit | editovat zdroj]
- Inzulinoterapie
- Hormony lidského těla: ADH • Estrogeny • Erytropoetin • Gestageny • Glukagón • Glukokortikoidy • Choriový gonadotropin • Inzulin • Katecholaminy • Kalcitonin • Noradrenalin • Parathormon • Prostaglandiny • Renin-angiotenzin-aldosteronový systém • Růstový hormon • Testosteron
- C-peptid
- Diabetes mellitus
Externí odkazy[upravit | editovat zdroj]
Použitá literatura[upravit | editovat zdroj]
- DUŠKA, František. Biochemie v souvislostech, 1.díl – základy energetického metabolizmu. 1. vydání. Praha : Karolinum, 2006. ISBN 80-246-1116-3.
- MURRAY, Robert K.. Harperova biochemie. 2. vydání. Jinočany : H&H, 1998. ISBN 80-7319-013-3.
- MOORE, Keith L. a PERSAUD. Zrození člověka: embryologie s klinickým zaměřením. 1. vydání. Praha : ISV, 2002. 564 s. ISBN 80-85866-94-3.
- GUYTON, Arthur C. a John E. HALL. Textbook of medical physiology. 11. vydání. Philadelphia : Elsevier Saunders, 2006. 1116 s. ISBN 0-8089-2317-X.
- LENEY, Sophie E. a Jeremy M. TAVARÉ. The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. Journal of Endocrinology. 2009, vol. 72, no. 203, s. 1-2, ISSN 1479-6805.